
Survey of One Machine Scheduling Problems

Kristina ·Sori¶c
Faculty of Economics Zagreb

Kennedyev trg 6
10000 Zagreb, Croatia
e-mail: ksoric@efzg.hr

May 6, 2002

Abstract

Below is presented a motivating introduction to One Machine Schedul-
ing Problems is presented including a sample of their many appli-
cations and their many formulations as mixed integer programming
problems. In the particular setting of these problems some new results
related to Lot Sizing Problem with Equipment Replacement are re-
viewed. A new multicriteria mixed 0-1 integer programming problem
is de¯ned and the properties of e±cient point set for this new problem
are studied. Also, a heuristic and some new computational results are
presented.

Key words: Scheduling, mixed integer programming, heuristic, meta-
heuristic, grouping problem, lot sizing, equipment replacement.

1 Scheduling Problems: De¯nition

In the last few years Machine Scheduling Problems became very actual and
important problems in the ¯eld of Operational Research. A question that has
received considerable attention is how to develop a production scheduling for
a facility that processes one product at a time and incurs a changeover cost
whenever it switches from the processing of one product to another. Even
though this scheduling problem is a simpli¯ed representation of the actual

1



planning problem, it has become a prototypical model in the operations
management literature because it captures the major cost tradeo®s to be
made in developing a schedule in numerous contexts: suppose that we have
to perform a number of jobs by using a number of machines. To perform
the jobs, each of them must be processed in the order given by a sequence.
The processing of a job requires processing time. Each machine can process
only one job at a time. Given a cost function by which the cost of each
possible solution can be measured, we want to ¯nd a processing order on
each machine so that the corresponding cost is minimized.
Such problems occur under widely varying circumstances. The termi-

nology used above already suggests that the problem arose originally in an
industrial production context. However, various other interpretations are
possible: jobs and machines can stand for patients and hospital equipment,
classes and teachers, ships and dockyards, dinners and cooks, programs and
computers, cities and traveling salesman, projects and payments.
In order to formulate these problems let n be the number of jobs denoted

by Ji (i = 1 : : : n) , m the number of machines and pij the processing time
of the ith job on jth machine. Each machine can process only one job at a
time.
Given a cost function, we want to ¯nd such a processing order on each

machine so that the corresponding cost is minimized.
Also, it turns out to be useful to distinguish between °ow-shop and job-

shop problems. In the former case each job passes the machines in the same
order, whereas in the latter case the machine order may vary per job.
Also, let us notice the di®erence between sequencing and scheduling. A

feasible sequence simply corresponds to an ordering of the jobs on each ma-
chine. Corresponding to each feasible sequence there is an in¯nity of feasible
schedules obtained by further specifying the exact starting time and ¯nish-
ing time of each job. In particular a schedule determines for each job a
completion time (Ci; i = 1 : : : ; n) at which it is ¯nished. Hence, every feasi-
ble schedule determines one sequence in a unique way . On the contrary, for
every (feasible) sequence we can get the start times of every job summing
the processing times of jobs processed before it.
For application of scheduling theory to be possible it is usually necessary

that certain conditions are ful¯lled. For example, a job Ji becomes available
in a certain moment ri (i = 1 : : : n), so called, release date.
The second situation occurs when precedence constraints exist between

jobs (for example, job Ji must be processed before job Jl, i 6= l) or the

2



weights are assigned to them (where !i is the weight assigned to job Ji).
Also, there are situations when deadlines of jobs (di; i = 1 : : : n) have to

be incorporated in the model (that is, Ci · di; i = 1 : : : n), where Ci is the
completion time of job Ji; i = 1 : : : n).
If jobs may be rejected or left un¯nished, the problem becomes more

complicated. When the interruption of the jobs is allowed, we have so called
preemption, otherwise a nonpreemption is present.
Each machine switch from one job to another requires so called setup

time (where ±i is the setup time of the job Ji) and changeover time (where
hi is the changeover time of the job Ji). Setup and changeover times may be
sequence independent or sequence dependent (where ±ij is the set up time of
the job Jj precedeed by the job Ji and hij is the changeover time of the job
Jj precedeed by the job Ji).
The description of the problem can be concluded with the discussion of

the optimality criteria.
In order to discuss the objectives, let us assume the existence of cost

functions ci(t) (i = 1 : : : n), non-decreasing in time variable. There are two
types of criteria: we shall seek to minimize the maximum cost

min cmax = min(max
i
fci(Ci)g) (1)

or minimize the total cost

min
X
ci = min

nX
i=1

ci(Ci) (2)

It is often advantageous from a computational point of view to use linear
cost functions.
In the case that ci(t) = t, i = 1 : : : n, (1) corresponds to the maximum

completion time, that is

Cmax = max
i=1:::n

Ci

and (2) corresponds to the sum of completion times, that is

X
Ci =

nX
i=1

Ci

3



If the cost function is of the form ci(t) = !it (where the !i are costs per
time unit for every job Ji, (i = 1 : : : n)), (2) becomes the weighted sum of
completion times, that is

X
!iCi =

nX
i=1

!iCi (3)

If !i =
1
n
, i = 1 : : : n, (3) becomes the average completion times, that is

¹C =
1

n

nX
i=1

Ci

If we de¯ne the °ow time

Fi := Ci ¡ ri; i = 1 : : : n
we can minimize the sum of the °ow times

Pn
i=1 Fi, the weighted sum of

°ow times
Pn
i=1 !iFi and the average °ow time ¹F .

Finally, we de¯ne the waiting time Wi by

Wi := Ci ¡ (ri +
mX
j=1

pij); i = 1 : : : n

Putting ci(t) = t¡ (ri+Pm
j=1 pij), we obtain criteria corresponding to the

sum of waiting times
P
Wi, the weighted sum of waiting times

P
!iWi and

the average waiting time ¹W .

As pointed before, it is sometimes convenient to assume the deadlines
(di; i = 1 : : : n) incorporated in the model. Taking ci(t) = t ¡ di, we de¯ne
the lateness Li by

Li := Ci ¡ di; i = 1 : : : n
and arrive at criteria corresponding to the minimization of the maximum

lateness Lmax, the sum of lateness
P
Li, the weighted sum of lateness

P
!iLi

and the average lateness ¹L.

Further, we de¯ne the tardiness by

4



Ti := maxf0; Lig; i = 1 : : : n

and we may seek the minimization of the maximum tardiness Tmax, the
sum of tardiness

P
Ti, the weighted sum of tardiness

P
!iTi or the average

tardiness ¹T .

Finally, there are criteria based on inventory cost, criteria based on uti-
lization and the others.
We can observe that some criteria are equivalent in the sense that the

optimal solution with respect to one of the criteria is optimal with respect
to the other(s) ([3]).
Now, we can give the classi¯cation (according to [3])of the scheduling

problems which has the following format:

h® j ¯ j °;¡ j ¢i

where:

- ® represents the number of jobs
- ¯ represents the number of machines
- ° indicates the possible restriction (°ow-shop o job-shop, sequence de-

pendent or sequence independent)
- ¡ indicates the possible limitations on pij; di o !i
- ¢ indicates the optimality criterion

For example, the problem

hn j 1 j seq dep j Cmaxi

is the problem to minimize the maximum completion time of n jobs to
be processed on one machine, when there are job dependent setup times and
sequence dependent changeover times.
Observe that the above classi¯cation does not describe the problem com-

pletely because a change in some parameter often leads to a substantially
di®erent problem that is the subject of separate research.

5



2 One Machine Scheduling Problems

A special class of scheduling problems arises from production planning. Its
objective is to ¯nd an optimal schedule of jobs that allows production runs
for several jobs that are made on a single machine in such a way that setup
and inventory costs or production completion time or average workload are
minimized.

Example 1. The simplest formulation of one machine scheduling prob-
lem is the following: there are n jobs. Let pi be the processing time required
by the ith job on the machine. Assume that the machine can only process
one job at a time. Also, when a job is put on the machine, its processing must
be completed before the machine can take up another job. Let ti represent
the starting time of processing the ith job, i = 1; : : : ; n. The problem is to
determine the constraints on the time variable ti's so that they represent a
feasible sequence on the machine.
This problem is modelled as a mixed integer programming problem in the

following way: let

yij =

(
1; if job Ji is started on the machine before job Jj
0; otherwise

i; j = 1; : : : ; n; i6= j
Let ® be a very large positive number. The constraints are:

®yij + ti ¡ tj ¸ pj

®(1¡ yij) + tj ¡ ti ¸ pi

yij + yji = 1

yij 2 f0; 1g; ti ¸ 0; i; j = 1 : : : ; n

6



Example 2. If the switch from one job to ith job requires setup time ±i
the constraints are the following: ®yij+ ti¡ tj ¸ ±i+pj, ®(1¡yij)+ tj¡ ti ¸
±j + pi, yij + yji = 1, yij 2 f0; 1g; ti ¸ 0; i; j = 1 : : : ; n.
This is the example of a sequence independent one machine scheduling

problem.

Example 3. If the switch from ith job to jth job requires setup time ±ij,
we have the sequence dependent one machine scheduling problem. Its mixed
integer programming formulation is then much more complicated than the
above one.

xki =

(
1; if job Ji is kth in the sequence
0; otherwise

i; k = 1; : : : ; n

wkij =

(
1; if job Ji is k ¡ 1th and jobJj is kth in the sequence
0; otherwise

k = 2; : : : ; n; i6= j

Let ® be a very large positive number. The constraints are:

®yij + ti ¡ tj ¸
nX
k=2

wkji±ji + pj (4)

®(1¡ yij) + tj ¡ ti ¸
nX
k=2

wkij±ij + pi (5)

yij + yji = 1 (6)

nX
i=1

xki = 1 k = 1; : : : ; n (7)

nX
k=1

xki = 1 i = 1; : : : ; n (8)

7



xki +
n¡kX
r=1

xk+rj ¡ 1 · yij i6= j; k = 1; : : : ; n (9)

wkij ¸ xk¡1i + xkj ¡ 1 i6= j; k = 2; : : : ; n (10)

wkij · xk¡1i i6= j; k = 2; : : : ; n (11)

wkij · xkj i6= j; k = 2; : : : ; n (12)

wkij + w
k
ji · 1 i6= j; k = 2; : : : ; n (13)

nX
k=2

wkij · 1 i6= j (14)

nX
j=1;j6=i

wkij · 1 i = 1; : : : ; n; k = 2; : : : ; n (15)

nX
i=1;i6=j

wkij · 1 j = 1; : : : ; n; k = 2; : : : ; n (16)

yij; x
k
i ; w

k
ij 2 f0; 1g; ti ¸ 0

The conditions (4) and (5) describe the fact that if the job Ji directly
precedes the job Jj on the kth place, then it should be tj ¡ ti ¸ ±ij + pi.
(7) and (8) make sure that the job Ji can be only on the one place in the
sequence and vice versa. (9) says that if the job Jj precedes the job Ji than
xk+rj = 0; 8 r = 1; : : : ; n¡k. (10) implies that if xk¡1i = 1; xkj = 1) wkij = 1,

(11) implies that if xk¡1i = 0) wkij = 0, (12) implies that if x
k
j = 0) wkij = 0

and (13) implies that if wkij = 1) wkji = 0.

Some other constraints could be added to the problem like release data

ti ¸ ri;
deadlines

8



ti + pi · di;

precedence constraints and so on.

Remark For Example 1., we could add some valid inequalities:

tj ¸
X
i6=j
piyij; j = 1; : : : ; n

®(1¡ yij) + tj ¡ ti ¸ pi +
X
l6=i;j

pl(ylj ¡ yli); i; j = 1; : : : ; n

or, for Example 2., we have

tj ¸
X
i6=j
(pi + ±i)yij + ±j; j = 1; : : : ; n

®(1¡ yij) + tj ¡ ti ¸ pi +
X
l6=i;j

(pl + ±l)(ylj ¡ yli) + ±j; i; j = 1; : : : ; n

Also, even if we could consider stochastic scheduling problems too, we will
concentrate on deterministic ones. More about scheduling problems could be
found on http://www.nada.kth.se/ viggo/wwwcompendium/node173.html.

Example 4. In order to avoid a big real number ®, we give another
formulation of sequence dependent One Machine Scheduling Problem.

xki =

(
1; if job Ji is kth in the sequence
0; otherwise

i; k = 1; : : : ; n

zklij =

8><>:
1; if job Ji is k ¡ 1th and jobJj is kth in the sequence

and both of them precede the jobJj
0; otherwise

9



k = 2; : : : ; n¡ 1; i6= l6= j

It follows

tj ¸
n¡1X
k=2

X
l6=i6=j

±liz
k
lij +

X
i6=j
piyij; j = 1; : : : ; n (17)

nX
i=1

xki = 1 k = 1; : : : ; n (18)

nX
k=1

xki = 1 i = 1; : : : ; n (19)

xki +
n¡kX
r=1

xk+rj ¡ 1 · yij i6= j; k = 1; : : : ; n (20)

xki ¡
kX
r=1

xrj ·
nX
l=1

zklij i6= j; k = 2; : : : ; n¡ 1 (21)

xk¡1l ¡
kX
r=1

xrj ·
nX
i=1

zklij l6= j; k = 2; : : : ; n¡ 1 (22)

nX
l=1

X
i6=l
zklij · 1¡ xkj j = 1; : : : ; n; k = 2; : : : ; n¡ 1 (23)

nX
l=1

X
i6=l
zklij · 1¡ xk¡1j j = 1; : : : ; n; k = 2; : : : ; n¡ 1 (24)

zklij · xk¡1l l6= i6= j; k (25)

zklij · xki l6= i6= j; k (26)

zklij · yij l6= i6= j; k (27)

zklij · ylj l6= i6= j; k (28)

10



zklij ¸ xk¡1l + xki + ylj + yij ¡ 3 l6= i6= j; k (29)

yij; x
k
i ; z

k
lij 2 f0; 1g; ti ¸ 0

The conditions (17) count all the setup times and processing times oc-
curred before the moment tj. To explain the conditions (21) let job Jl be
k¡1th in the sequence. IfPn

l=1 z
k
lij = 0 than z

k
lij = 0, 8i6= j. That means (a)

Ji is not kth in the sequence, that is x
k
i = 0 and than ¡

Pk
r=1 x

r
j · 0 or (b) Ji

is kth in the sequence, but not before Jj. Since x
k
i = 1 from conditions (21)

and (19) follows that there is some r < k such that xrj = 1, that is job J¡j is
precessed before job Ji. Conditions (22) are explained in the analogous way
as the conditions (21). The conditions (23) describe the fact that if xkj = 1,
that is, the job Jj is kth in the sequence, then z

k
lij = 0, 8l6= i6= j. If xkj = 0,

the conditions are satis¯ed in a trivial way. (25) say that if the job Jl is not
k ¡ 1th in the sequence, then zklij = 0. Analogously, (26), if the job Ji is not
kth in the sequence, then zklij = 0. The conditions (27) make sure that if
the job Ji is not processed before Jj, then z

k
lij = 0. Analogously, (28) make

sure that if the job Jl is not processed before Jj, then z
k
lij = 0. Finally, the

conditions (29) describe the fact that if xk¡1l = 1, xki = 1, ylj = 1 and yij = 1
then zklij = 1. Every other case is satis¯ed in a trivial way.

Example 5. Time Indexed Formulation. The very important question
in Machine Scheduling Problems is how to model the time. A well known al-
ternative way to model it is to use time-indexed variables. Such formulations
are often unavoidable when manpower or resource requirements vary during
the processing of a job. To present some basic results for such formulation,
suppose pi; ri; ti; Ci 2 N . We de¯ne the problem of minimizing the weighted
sum of completion times

Pn
i=1 !iCi with release data ri. Let T be the time

horizon and

yit =

(
1; if job Ji is ¯nished in period t
0; otherwise

i = 1; : : : ; n; t = 1; : : : ; T

Since the job Ji can not start before its release data and ¯nish before
ri + pi, it follows that

yit = 0; 8t < ri + pi

11



.
Also, let us add the condition that job Ji has to precede the job Jk.
The model is as follows:

min
nX
i=1

!i
TX
t=1

tyit

TX
t=1

tyit = 1; i = 1; : : : ; n (30)

tX
s=1

yis ¸
t+pkX
s=1

yks (31)

zaJi < Jk; t = 1; : : : ; T ¡ pk

nX
i=1

t+pi¡1X
s=t

yis · 1; t = 1; : : : ; T (32)

The condition (30) describes the fact that each job can be performed once
at the most. (31) makes sure that job Ji precedes the job Jk. Since there
can be only one job on the machine, we have (32). If we want job Ji to be
preformed at least ¿ periods before job Jk, we will put

TX
t=1

tykt ¡
TX
t=1

tyit ¸ ¿

3 Resolving One Machine Scheduling Prob-

lems

(One) Machine Scheduling Problems are modelled as mixed integer program-
ming problems that are usually solved by branch and bound method.

12



3.1 Branch and Bound

This method is almost as frequently applied to (mixed) integer programming
problems as the simplex method to linear programming problems. In a situa-
tion where it takes a long time to reach an optimal solution, the calculations
can be stopped at any stage of the branch and bound process and the best so-
lution obtained so far can be used. However, similar to the simplex method,
the worst case complexity of branch and bound algorithm is exponential.
Sometimes authors use cutting planes to reformulate and solve mixed

integer programming problems using valid inequalities as cutting planes. The
resulting algorithm is called branch and bound/cutting planes algorithm.
One of this algorithms for One Machine Scheduling Problem could be found
in [7].
Since the early 1970s, a class of optimization problems is being con-

structed for which the existence of e±cient algorithms is extremely unlikely.
An interesting feature of this class is the strong interrelationship between its
members: if one ¯nds an e±cient algorithm to solve any one problem in this
class, one can easily modify it to solve all the problems in this class e±ciently.
This class is usually referred to as the class of NP-hard problems. NP-hard
problems include some (One) Machine Scheduling Problems.
The conjecture that no NP-hard problem is e±ciently solvable is denoted

by

P 6= NP

where P refers to the class of problems for which a polynomial algorithm
is known. So, what remains in this particular area of research is to prove (or
disprove) the P 6= NP conjecture. Until someone disproves this conjecture,
only algorithms for NP-hard problems are designed that generate good feasi-
ble solutions in polynomial time. Such algorithms are called heuristics. The
current popularity of heuristics are classi¯ed, tested and mutually compared
on their performances.
More about the complexity of (One) Machine Scheduling Problems can be

found on http://www.mathematik.uni-osnabrueck.de/research/OR/class/ and
http://www.nada.kth.se/ viggo/wwwcompendium/.

13



3.2 Heuristics

In mathematical programming, heuristics usually means a procedure that
seeks a solution but does not guarantee it will ¯nd one. It is often used in
contrast to an algorithm, so branch and bound would not be considered a
heuristics in this sense. Heuristic search is any (purposeful) search procedure
to seek a solution to a global optimization problem, notably to combinatorial
optimization. One of this algorithms for One Machine Scheduling Problem
could be found in [6].
A speci¯c class of local heuristic search algorithms is the greedy algorithm.
Here are heuristic search strategies that are based on some biological

metaphor:

² Ant colony optimization, based on how ants solve problems;
² Genetic algorithm, based on genetics and evolution;
² Neural networks, based on how the brain functions;
² Simulated annealing, based on thermodynamics;
² Tabu search, based on memory-response;
² Target analysis, based on learning.

Greedy algorithm applies when the optimization problem is to decide
whether or not to include some element from a given set. A greedy algorithm
begins with no elements and sequentially selects an element from the feasible
set of remaining elements by myopic optimization. (The elements could have
been sorted by some criterion, such as associated weights.) This results in
an optimal solution to the problem if, and only if, there is an underlying
matroid structure (for example, see spanning tree).

Ant colony optimization is a heuristic search approach to combina-
torial optimization based on the behavior of ant colonies, particularly their
ability to collectively determine the shortest paths . Real ants are capable
of ¯nding shortest path from a food source to the nest without using visual
cues. Also, they are capable of adapting to changes in the environment, for

14



example ¯nding a new shortest path once the old one is no longer feasible
due to a new obstacle.

Genetic algorithm (GA) is a class of algorithms inspired by the mech-
anisms of genetics, which has been applied to global optimization (especially
combinatorial optimization problems). It requires the speci¯cation of three
operations (each is typically probabilistic) on objects, called "strings" (these
could be real-valued vectors):

² Reproduction - combining strings in the population to create a new
string (o®spring)

² Mutation - spontaneous alteration of characters in a string
² Crossover - combining strings to exchange values, creating new strings
in their place

These can combine to form hybrid operators, and the reproduction and
crossover operations can include competition within populations. Here is a
generic GA (strategy):

1. Initialize population.

2. Select parents for reproduction and GA operators (viz., mutation and
crossover).

3. Perform operations to generate intermediate population and evaluate
their ¯tness values.

4. Select members of population to remain with new generation.

Repeat 1-3 until some stopping rule is reached.
More details about GA could be found on http://samizdat.mines.edu/ga tutorial/.

Neural network (also called arti¯cial neural network, abbr. ANN). A
network where the nodes correspond to neurons and the arcs correspond to
synaptic connections in the biological metaphor.

Simulated annealing is an algorithm for solving hard problems, notably
combinatorial optimization, based on the metaphor of how annealing works:

15



reach a minimum energy state upon cooling a substance, but not too quickly
in order to avoid reaching an undesirable ¯nal state. As a heuristic search, it
allows a non-improving move to a neighbor with a probability that decreases
over time. The rate of this decrease is determined by the cooling schedule,
often just a parameter used in an exponential decay (in keeping with the
thermodynamic metaphor). With some (mild) assumptions about the cooling
schedule, this will converge in probability to a global optimum.

Tabu search is a metaheuristics to solve global optimization problems,
notably combinatorial optimization, based on multi-level memory manage-
ment and response exploration. It requires the concept of a neighborhood for
a trial solution (perhaps partial). In its simplest form, a tabu search appears
as follows:

² Initialize. Select x and set Tabu List T = null. If x is feasible, set
x¤ = x and f ¤ = f(x¤); otherwise, set f¤ = ¡1 (for minimization set
f ¤ =1).

² Select move. Let S(x) = set of neighbors of x. If S(x) n T is empty, go
to update. Otherwise, select y in argmaxfE(v) : v 2 S(x) n Tg, where
E is an evaluator function that measures the merit of a point (need not
be the original objective function, f). If y is feasible and f(y) > f¤,
set x¤ = y and f¤ = f(x¤). Set x = y (i.e., move to the new point).

² Update. If some stopping rule holds, stop. Otherwise, update T (by
some tabu update rule) and return to select move.

There are many variations, such as aspiration levels, that can be included
in more complex speci¯cations.

Target analysis is a metaheuristics to solve global optimization prob-
lems, notably combinatorial optimization, using a learning mechanism. In
particular, consider a branch and bound strategy with multiple criteria for
branch selection. After solving training problems, hindsight is used to elim-
inate dead paths on the search tree by changing the weights on the criteria:
set w > 0 such that wVi · 0 at node i with value, Vi, that begins a dead
path, and wVi > 0 at each node, i, on the path to the solution. If such
weights exist, they de¯ne a separating hyperplane for the test problems. If
such weights do not exist, problems are partitioned into classes, using a form

16



of feature analysis, such that each class has such weights for those test prob-
lems in the class. After training is complete, and a new problem arrives, it
is ¯rst classi¯ed, then those weights are used in the branch selection.

Remark Metaheuristics is a general framework for heuristics in solving
hard problems. The idea of 'meta' is that of level. An analogy is the use of
a meta-language to explain a language.
Metaheuristics guide the application and use of local improvement heuris-

tics. They are used to search the many local optima which most local heuris-
tics ¯nd, attempting to locate the global optimum. This approach has met
with a great deal of success.
Examples of metaheuristics are: Ant colony optimization, Genetic al-

gorithms, Memetic algorithms, Neural networks, Scatter search, Simulated
annealing, Tabu search, Target analysis.

Memetic Algorithms is a population-based approach for heuristic search
in optimization problems. They have shown that they are orders of magni-
tude faster than traditional Genetic Algorithms for some problem domains.
Basically, they combine local search heuristics with crossover operators. For
this reason, some researchers have viewed them as Hybrid Genetic Algo-
rithms. However, combinations with constructive heuristics or exact methods
may also belong to this class of metaheuristics. Since they are most suitable
for MIMD parallel computers and distributed computing systems (including
heterogeneous systems) as those composed by networks of workstations, they
have also received the dubious denomination of Parallel Genetic Algorithms.
Other researchers know it as Genetic Local Search.

3.3 De¯ning One Machine Scheduling Problem as a
Grouping Problem

Automatic grouping and segmentation of images remains a challenging prob-
lem in computer vision. Recently, a number of authors have demonstrated
good performance on this task using methods that are based on eigenvectors
of the a±nity matrix. These approaches are extremely attractive in that
they are based on simple eigendecomposition algorithms whose stability is
well understood.

17



Human perceiving of a scene can often easily segment it into coherent
segments or groups. There has been a tremendous amount of e®ort devoted
to achieving the same level of performance in computer vision. In many
cases, this is done by associating with each pixel a feature vector (e.g. color,
motion, texture, position) and using a clustering or grouping algorithm on
these feature vectors.
Recently, treating the grouping problem as a graph partitioning problem,

a number of authors have suggested alternative segmentation methods that
are based on eigenvectors of the (possibly normalized) "a±nity matrix". One
example of such an a±nity matrix is de¯ned by:

W (i; j) = e¡d(xi;xj)=2¾
2

with ¾ a free parameter. In this case we have used d(xi; xj) = kxi ¡ xjk,
but di®erent de¯nition of a±nities are possible. The a±nities do not even
have to obey the metric axioms, we only assume that d(xi; xj) = d(xj; xi).
From visual inspection, the a±nity matrix contains information about

the correct segmentation. Shi and Malik [4] look at generalized eigenvectors.
Let D be the degree matrix of W :

D(i; i) =
X
j

W (i; j)

De¯ne the generalized eigenvector yi as a solution to:

(D ¡W )yi = ¸iDyi
and de¯ne the second generalized eigenvector as the yi corresponding to

the second smallest ¸i. Shi and Malik suggested thresholding this second gen-
eralized eigenvector ofW in order to cut the image into two parts. They have
shown that the second generalized eigenvector is a solution to a continuous
version of a discrete problem in which the goal is to minimize:

yT (D ¡W )y
yTDy

subject to the constraint that y 2 f1;¡bg and yTD1 = 0 (where 1 is the
vector of all ones). Note that the above expression is the Rayleigh quotient
([1]).

18



The signi¯cance of the discrete problem is that its solution can be shown
to give you the segmentation that minimizes the normalized cut:

Ncut(A;B) =
cut(A;B)

asso(A; V )
+
cut(A;B)

asso(B; V )

where cut(A;B) =
P
i2A;j2BW (i; j) and asso(A; V ) =

P
j

P
i2AW (i; j).

Thus the solution to the discrete problem ¯nds a segmentation that minimizes
the a±nity within each group.

The Grouping Algorithm consists of the following steps:

1. Given an image or image sequence, set up a weighted graph G=(V,E)
and set the weight on the edge connecting two nodes being a measure
of the similarity (a±nity) between nodes.

2. Solve (D¡W )x = ¸Dx for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with second smallest eigenvalue to bipartition the
graph

4. Decide if the current partition should be sub-divided and recursively
repartition the segmented parts if necessary

To de¯ne an One Machine Scheduling Problem as a grouping problem let
jobs be the nodes of a graph, the sum of set up time and processing time be
the weight on an edge. Since in a sequence dependent scheduling problem
case, the a±nity matrix is not a simetric matrix, we can do the following:
between any two nodes i and j, put a node (i; j) such that the weight on
the edge connecting nodes i and (i; j) is ±ij and the weight on the edge
connecting nodes (i; j) and j is ±ji. After applying the grouping algorithm,
we get a bipartition of the graph. Treating each group of the bipartition
as a job, we resolve the scheduling problem with two jobs. The processing
time of each job is the worst case sum of all set ups and processing times
in that group of the bipartition. repeating the procedure, we stop when the
di®erence between two consecutive optimal solutions is su±ciently small.
This de¯nition of One Machine Scheduling Problem as a grouping problem

is just an idea discussed in [8].

19



4 Lot Sizing Problem

Production Lot Sizing Problem is one of the oldest mixed-integer programs
in operations research, ¯rst presented by Wagner and Whitin in 1958. It is
de¯ned as follows: each of m products (jobs) is to be processed on a single
machine in order to satisfy known demands in each of n periods. The object
is to minimize the sum of the costs of production, storage and set up. The
data are:

² dit the demand for product i in period t
² pit the unit production cost of product i in period t
² hit the unit storage cost for product i in period t
² kit the unit backlog (shortage) cost for product i in period t
² f it the ¯xed setup cost for product i in period t
² cijt the changeover cost from product i to product j in period t

² Cit the production capacity for product i in period t

Let

² xit the amount of product i produced in period t
² sit the inventory (stock) of product i in period t
² rit the backlog (shortage) of product i in period t

and

yit =

(
1; if machine is set up for product i in period t
0; otherwise

wijt =

8><>:
1; if machine is set up for product j in period t

and was set up for product i in period t¡ 1
0; otherwise

The mixed integer programming formulation is

20



min
mX
i=1

nX
t=1

(pitx
i
t + h

i
ts
i
t + k

i
tr
i
t + f

i
ty
i
t +

X
j6=i
cijt w

ij
t )

sit¡1 + r
i
t + x

i
t = d

i
t + s

i
t + r

i
t¡1 8i; t (33)

xit ·Myit 8i; t (34)

wijt ¸ yit¡1 + yjt ¡ 1 (35)

mX
i=1

yit · 1; 8t (36)

xit; s
i
t; r

i
t ¸ 0; yit; wijt 2 fo; 1g

where M is the upper bound on the production capacities. The constraints
(33) represent the °ow conservation constraints for each product in each
period. The constraints (36) refer to a single mode of production.
(34) could be changed by the condition

xit · Cityit 8i; t
The fact that the production in each period is either 0 or at the full and

constant capacity over time is modelled by the condition

xit = C
i
ty
i
t 8i; t

5 Lot Sizing Problem with Equipment Re-

placement

An Equipment Replacement Problem concerns a machine which deteriorates
with age and the decision to replace it. We assume that we must own such a
machine during each of n periods and that the utility of operating a machine

21



for one period is a known quantity and depends on the age of the machine.
The object is to decide when to replace the machine in order to maximize
the utility of operating it.
Combining the Lot Sizing Problem with this one, a new multicriteria

mixed integer programming problem is de¯ned as follows: let

² j the age of the machine, j = 1 : : : J
² ¼itj unit production revenue of product iin the period tif the machine
is of age j

² cjt cost of replacing the machine of age jin period t
² mj

t cost of maintaining the machine of age jin period t

The variables are:

² xitj the amount of product i produced in period tif the machine is of
age j

²

zjt =

(
1; if machine of age j is replaced in period t
0; otherwise

with
PJ
j=1 z

j
0 = 1.

The multicriteria mixed integer programming formulation of Lot Sizing
Problem with Equipment Replacement (LSPER) is the following one:

min
nX
t=1

24 mX
i=1

0@pit JX
j=1

xitj + h
i
ts
i
t + f

i
ty
i
t

1A+ JX
j=1

³
cjtz

j
t +m

j
t(1¡ zjt )

´35

max
nX
t=1

mX
i=1

JX
j=1

¼itjx
i
tj

sit¡1 +
JX
j=1

xitj = d
i
t + s

i
t 8i; t (37)

22



JX
j=1

xitj ·Myit 8i; t (38)

xitj ·M
JX
l=1

zlt¡j 8i; t; j; j · t (39)

JX
j=1

xitj ·M
0@1¡ JX

j=1

zjt

1A 8i; t (40)

mX
i=1

yit · 1; 8t (41)

JX
j=1

zjt · 1; 8t (42)

t+JX
l=t+1

l¡tX
j=1

zjl ¸
JX
j=1

zjt ; 8t = 1; : : : n¡ J (43)

xitj; s
i
t ¸ 0; yit; zjt 2 fo; 1g

Constraints (39) force the production of product i in period t to zero if
the machine is not of age j. If the machine of age less or equal to J is replaced
in period t, the production xitj in this period is forced to zero by constraints
(40). Constraints (42) represent the possibility of changing the machine only
once in period t. Constraints (43) force the machine to be replaced after age
J .

5.1 Resolving the LSPER

Let us begin with the construction of e±cient point set as follows: let

f1 = ¡
nX
t=1

24 mX
i=1

0@pit JX
j=1

xitj + h
i
ts
i
t + f

i
ty
i
t

1A+ JX
j=1

³
cjtz

j
t +m

j
t(1¡ zjt )

´35

f2 =
nX
t=1

mX
i=1

JX
j=1

¼itjx
i
tj

23



and S the feasible set of LSPER. We de¯ne the objective set as

F = F (S) = f(f1; f2); f1 = f1(w); f2 = f2(w); w 2 Sg:
The problem LSPER is now stated as

maxf(f1; f2); (f1; f2) 2 F (S)g
For ® 2 [0; 1], let problem LSPER(®) be

maxf(w;®) = ®f2(w) + (1¡ ®)f1(w)

w 2 S
and S(®; F ) = f(f1; f2) : maxf1;f2f®f2 + (1¡ ®)f1 : (f1; f2) 2 Fgg. The

elements of S(®; F ) are called e±cient solutions.
But, resolving the problem LSPER(®), only some e±cient solutions

are obtained. In order to obtain other solutions, we resolve the problem
LSPER¤:

min y

y ¸ f1 ¡ g¤1

y ¸ g¤2 ¡ f2

x 2 S
where g¤1 = min f1, g

¤
2 = max f2.

5.2 Example

Data are chosen so that as the machine gets older, the replacement and
maintaining costs increase and the revenue decreases. Also, n = 4 m =
2, J = 2. The goal (g¤1; g

¤
2) is (28,33) and the e±cient solutions obtained

resolving the LSPER(®) are (28,33) and (32,33). Resolving the problem
LSPER¤, another e±cient solution is obtained (31,29).

24



5.3 Future work

In order to obtain every e±cient solution another optimality criterion could
be de¯ned as the norm

k ¢ k(®) = ®k ¢ k1 + (1¡ ®)k ¢ k1
where k¢k1 and k¢k1 are HÄolders lp norms for p = 1 and p =1, respectively,
and ® 2 [0; 1] is a real number as above.
Also some improvements should be done for larger problems. The idea

of constructing the valid inequalities for the problem LSPER is under the
consideration.

References

[1] G.H. Golub, C.F. Van Loan, 'Matrix Computations', 1989, John Hop-
kins Press

[2] . S. Hochbaum (edited by, 1997), 'Approximation Algorithms for NP-
hard Problems', PWS Publishing Company, Boston

[3] A. H. G. Rinnooy Kan (1976), 'Machine Scheduling Problems', Classi-
¯cation, complexity and computations', Martinus Nijho®, the Hague

[4] J. Shi and J. Malik, 'Normalized Cuts and Image Segmentation', Proc.
IEEE Conference on Computer Vision and Pattern Recognition, 1997,
pp. 731-737

[5] G. Sierksma (1996), 'Linear and Integer Programming', Marcel Dekker,
Inc, New York, Basel

[6] K. ·Sori¶c, " The CLWS heuristics for Single Machine Scheduling Prob-
lem", European Journal of Operational Research" , 1999, Vol. 120, No.
2, pp. 352-358

[7] K. ·Sori¶c, "A Cutting Plane Algorithm for Single Machine Scheduling
Problem", European Journal of Operational Research", , 2000, Vol. 127,
No. 2, pp. 383-393

[8] K. ·Sori¶c, Z. Drma·c, "A heuristics for One Machine Scheduling Problem",
presentation on IFORS 2002, Edinburgh, July 8-12, 2002.

25



[9] K. ·Sori¶c, V. Vojvodi¶c Rosenzweig, \Lot Sizing Problem with Equipment
Replacement { Computational Results", presentation on 8th Interna-
tional Conference on Operational Research, Rovinj, Croatia, September
27 { 29, 2000

[10] Kristina ·Sori¶c, (1997), 'Exact Algorithms and Heuristics for Single Ma-
chine Scheduling Problem', PhD Thesis, Department of Pure and Ap-
plied Mathematics, University of Padova, Italy

[11] http://carbon.cudenver.edu/ hgreenbe/glossary/

[12] http://www.samizdat.mines.edu/ga tutorial/

[13] http://www.mathematik.uni-osnabrueck.de/research/OR/class/

[14] http://www.nada.kth.se/ viggo/wwwcompendium/

[15] ttp://www.opsresearch.com/OR-Links/index.html

[16] ttp://www.personal.psu.edu/faculty/t/m/tmc7/tmclinks.html

[17] ttp://www.nada.kth.se/ viggo/wwwcompendium/node173.html

26


